The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding.

نویسندگان

  • Wei-I Chou
  • Tun-Wen Pai
  • Shi-Hwei Liu
  • Bor-Kai Hsiung
  • Margaret D-T Chang
چکیده

The starch-hydrolysing enzyme GA (glucoamylase) from Rhizopus oryzae is a commonly used glycoside hydrolase in industry. It consists of a C-terminal catalytic domain and an N-terminal starch-binding domain, which belong to the CBM21 (carbohydrate-binding module, family 21). In the present study, a molecular model of CBM21 from R. oryzae GA (RoGACBM21) was constructed according to PSSC (progressive secondary structure correlation), modified structure-based sequence alignment, and site-directed mutagenesis was used to identify and characterize potential ligand-binding sites. Our model suggests that RoGACBM21 contains two ligand-binding sites, with Tyr32 and Tyr67 grouped into site I, and Trp47, Tyr83 and Tyr93 grouped into site II. The involvement of these aromatic residues has been validated using chemical modification, UV difference spectroscopy studies, and both qualitative and quantitative binding assays on a series of RoGACBM21 mutants. Our results further reveal that binding sites I and II play distinct roles in ligand binding, the former not only is involved in binding insoluble starch, but also facilitates the binding of RoGACBM21 to long-chain soluble polysaccharides, whereas the latter serves as the major binding site mediating the binding of both soluble polysaccharide and insoluble ligands. In the present study we have for the first time demonstrated that the key ligand-binding residues of RoGACBM21 can be identified and characterized by a combination of novel bioinformatics methodologies in the absence of resolved three-dimensional structural information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase.

CBMs (carbohydrate-binding modules) function independently to assist carbohydrate-active enzymes. Family 21 CBMs contain approx. 100 amino acid residues, and some members have starchbinding functions or glycogen-binding activities. We report here the first structure of a family 21 CBM from the SBD (starch-binding domain) of Rhizopus oryzae glucoamylase (RoCBM21) determined by NMR spectroscopy. ...

متن کامل

Two Unique Ligand-Binding Clamps of Rhizopus oryzae Starch Binding Domain for Helical Structure Disruption of Amylose

The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD) has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21) members, and a Y32/F58 clamp located at binding site...

متن کامل

Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path.

GA (glucoamylase) hydrolyses starch and polysaccharides to beta-D-glucose. RoGA (Rhizopus oryzae GA) consists of two functional domains, an N-terminal SBD (starch-binding domain) and a C-terminal catalytic domain, which are connected by an O-glycosylated linker. In the present study, the crystal structures of the SBD from RoGA (RoGACBM21) and the complexes with beta-cyclodextrin (SBD-betaCD) an...

متن کامل

Specific characteristics of family 45 endoglucanases from Mucorales in the use of textiles and laundry.

We examined the characteristics of family 45 endoglucanases (glycoside hydrolases family 45; GH45) from Mucorales belonging to Zygomycota in the use of textiles and laundry. The defibrillation activities on lyocell fabric of family 45 endoglucanases from Mucorales, such as RCE1 and RCE2 from Rhizopus oryzae, MCE1 and MCE2 from Mucor circinelloides, and PCE1 from Phycomyces nitens, were much hig...

متن کامل

The evolution of starch-binding domain.

Amylolytic enzymes belonging to three distinct families of glycosidases (13, 14, 15) contain the starch-binding domain (SBD) positioned almost exclusively at the C-terminus. Detailed analysis of all available SBD sequences from 43 different amylases revealed its independent evolutionary behaviour with regard to the catalytic domains. In the evolutionary tree based on sequence alignment of the S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 396 3  شماره 

صفحات  -

تاریخ انتشار 2006